U
1%;%1& Characteristics

Different individuals judge software on different basis. This is because they are involved
~with the software in different ways. For example, users want the software to perform

according to their requirements. Similarly, developers involved in designing, coding and
maintenance of the software evaluate the software by looking at the internal characteristics

of the products, before delivering it to the user. Software characteristics are classified into
six major components. These components are listed below:

Figure 1.1 Characteristics of Software

Scanned by CamScanner

- well-defined set of inputs, outputs and
' are made available through the interface a
' done through that interface. Council and He
| follows.

- and is subject to composition by third parties.”

; e components are independent and hence, the

e The component_s do ot have to be co
I o The communication and interaction

of software to function Pmper $
ine any changes in it ' ' |
mgne;’ haracteristics, robu.gtnq.s‘sandmtegrw are ?bo
e-mentioned extent to which software can oor{fm:;e >
. despite the introduction of invalid input, while integrity ;efersc:;l o
i uthorised access or modification of sqﬁware or data ca |

- {

an independent executable soﬁYvare element vz‘:
interface. All the services provided by a corpopg
od all the interactions with the comporent g
inmann define the term software compotent

| software component is defined as

5

“4 software component is a software element that conforms to a component model ar?d cat
be independently deployed and composed without modification according to a composition,

Szyperski describes the term as follows.

“A software component is a unit of composition with contractually specified interfacegang
explicit context dependencies only. A software component can be deployed independently

\Ihe software engineering that emphasizes the design and development of computer- baseg
systems using software components is called component-based software engineering (CBSE)
The main objective of CBSE is to standardize the interfaces between software component
s0 that they can be assembled easily to develop new software. The basic idea behind CBSE
Is to reuse the existing components. The components developed for a specific applicatio
have to be generalized to make themreusable. In other words, the more generalized interface
the greater the reusability. Apart from the advantage of reusability, the components have :

do i :]
are easy to modify, ¥ do not interfere with each other

The inner workings of the components arg hidden from the user

mpiled prior to their use with other components
o Wlth the components is done through wel]-déf "

platforms are shared and hence, the development costs a
: . 0Sts

> Some clmrécteristi‘cs that a softwa; mm |
‘ are program mus '
t These are e below, o POSSESS before it qualifies

Scanned by CamScanner

* operations of a computer system. System software is a group of programs rather than
“one program and is responsible for using computer resources efficiently and effectively.
For example, operating system is system software, which controls the hardware, manages
‘memory and multi-tasking functions, and acts as an interface between applications
programs and the computer. i

Real-time software: This class of software observes, analyses, and controls real world

_events as they occur. Generally, a real-time system guarantees a response to an external
event within a specified period of time. For example, real-time software is used for
navigation in which the computer must react to a steady flow of new information
without interruption. Most of the defence organisations all over the world use real-time
software to control their military hardware.

~ Business software: This class of software is widely used in areas where the management
and control of financial activities is of utmost importance. The fundamental component of
a business software comprises of payroll, inventory, accounting, and software that permits
user to access relevant data fromthe database. These activities are usually performed with
the help of specialised business software that facilitates efficient framework inthe business
operation and in management decisions. -

Engineering and scientific software: This class of software has emerged as a powerful
- tool to provide help in the research and development of next generation technology.
Applications, such as study of celestial bodies, study of under-surface activities, and
programming of orbital path for space shuttle are heavily dependent on engineering and
scientific software. This software is designed to perform precise calculations on complex
numerical data that are obtained during real-time environment.

-Arti.ﬁcia'l intelligence (AI) software: This class of software is used where the problem
solving technique is non-algorithmic in nature. The solutions of such problems are
generally non-agreeable to computation or straightforward analysis. Instead these
prpb leI:n? require specific problem solving strategies that include expert system, .;)attern -
recogn.ltxon, and game playing techniques. In addition, it involves different kinds of
‘ :g;r:v};:g. tetchng;;es incluging the t}lse (;f heuristics. The role of artificial intelligence
1s to add certain degree of intelligence i hani

the desired work done in an z?gile manner. i mechamcg} :hardvlvare o s

| b-based software: This class Ofsoﬁware acts as an interface between the ﬁsel; -é.nd i
nternet. Data on the Internet can be in the form of text, audio, or video ‘

e

oftware: This class of software is responsible for managing and ntrollmg | oo

| écanne by CamScanner

pports additional features that are use ng the I
rsonal ‘tlfoi!_lputer (PC) software: This class of software is used for-o‘_ﬁ'xéigl«__g
personal use on daily basis. The personal computer software market has grown o

the last two decades from normal text editor to word processor and fro{n simple
| This software is used predominantly in
ment system, financial accounting
a versatile tool for daily life

~ paintbrush to advance image-editing software.
~ almost every field, whether it is database manage
package, or a multimedia based software. It has emerged as

applications. 5
Software can be also classified in terms of how closely software users or software purchasers
are associated with the software development. ;

oftware for which

« Commercial off the shelf (COTS): In this category comes the s
for sale. The software users have less or

there is no committed user before it is put up . tail stores o
no contact with the vendor during development. It is sold through retal e r
distributed electronically. This software includes commonly used programs, .

. tax programs, as well as software

word processors, spreadsheets, games, income i : Is
development tools, such as, software testing tools and object modelling to0%s.

o Customised or bespoke: In this classification, software is developed for a specific
user, who is bound by some kind of formal contract. For example, software developed
for an aircraft is usually done for a particular aircraft making company. They are not
purchased ‘off-the-shelf* like any word processing software. :

e Customised COTS: Inthis classification, user canenter into a contract with the software
vendor to develop a COTS product for a special purpose, that is, software can be
customised according to the needs of the user. Another growing trend is the development
of COTS software components—components that are purchased and used to develop
new applications.

The COTS software component vendors are essentially parts stores, which are classified

according to their application types. These types are listed below:

o Stand-alone Software: Resides on a single computer and does not interact with any
other software installed in a different computer.

o Embedded Software: Part of unique application involving hardware like automobile
controller.

° 'Real;-time Software: Operations execute within very short time limits, often
microseconds. For example, radar software in air traffic control system.

o Network Software: Software and its components interact across a network.

(c) Reaktime :
(d) Network

Figure 1_-2 Types of Customised COTS -
Scanned by CamScanner

bsystems increases nor-lincarly. This.
cannot be understood properly. 8

’ | establish an adequate and stable set of requi ‘ ftwar
 This is because hidden assumptions exist. In addition, there 1S N0 analytic

for determining whether the developers are aware of the user’s
r not, thus creating an environment where both users and developers are

requirements.
market today has a turnover of more than millions of rupees. Out of this,

roximately 30% of software is used for personal computers and the remaining softw;are
deve for specific users or orga izations. Application areas, such as the banking
are completely dependent on software application for their working. Software failures
shnology-oriented areas have led to considerable loss in terms of time, money,
uman lives. History has seen many such failures. Some of these are listed below:

ing the gulf war in 1991, United States of America used Patriot missile as a defence

. inst Iraqi Scud missile. However, this Patriot failed to hit Scud missile mahy times.
a result 28 US soldiers were killed in Dhahran, Saudi Arabia. An inquiry into the

rmcldent concluded that a small bug resulted in the miscalculation of missile path.
i :]

o Arian-5 space rocket developed at the cost of $7000 million over a period of 10 years
- was destroyed in 39 seconds, after its launch. The crash occurred because a software
~ bug existed in the rocket guidance system. ..

« In June 1980, the North American Aerospace Defence Command (NORAD) reported
that the US was under missile attack. The report was traced to a faulty computer circuit
. that generated incorrect signals. If the developers of the software responsible for -
~processing these signals had taken into account the possibility that the circuit could fail,
e alert might not have occurred.

2000 (Y2K) problem refers to the widespread snags computers had in processing
fter the year 2000. Seeds of the Y2K trouble were planted during 1960-80,

1
digi

reincnts for a soﬁware | e

was relatively limiteds Thet |

Scanned by CamScanner

ress

ftware
1970s.

ligence,

ibility.

OFTWARE ENGINEERING DEFINITION

i As discussed
: 'ﬁeld‘oftechnologx

Software eng
ofengineeri

and maintenance of s
both in its manageria

Software Engineering Layers: Softw

are engineerin
0gy. The various layers are listed b

ools layer provide

S Computerised or

Semi-computeriseq su

Figure 1.3 Layers of Software
Engineering

Scanned by CamScanner

C PESSIAERIPS (O

O = -

g can be viewed as g layered

L A software engineer is an individual responsible for analysis, design, testing, implementation,

- evolved rapidly, which has resulted in new areas of specialization and changing technology.

- Thns team comprises of engineering, marketing, manufacturing, and designing people who
| _Vf'ork together until the software is released. : '

: ’.;S-_o‘ftw'am Engineer

 and maintenance of effoctive and efficient software system. In addition, software engineer
is also responsible for maintaining subsystems and external interfaces, subject to time and

pudgetary constraints.

from management of analysis, specification, design and development of soft-

Apart and

ware applications, software engineers oversee the cgrtiﬁcation, maintenance,
testing of software applications. Software engineer also integrates the components o-f a
complex software system. Generally, software engineer should possess the following

qualities:

Problem solving skills: Software engineer should develop algorithms and solve

programming problems. :

o Programming skills: Software engineer should be well versed in data structures and

algorithms, and must be expert in one or more programming languages and possess
strong programming capabilities.

o Design approaches: Software engineer should be familiar with numerous design
approaches required during the development of software, at the same time, he should be
able to translate ambiguous requirements and needs into precise specifications, and be
able to converse with the use of a system in terms of applications.

o Software technoiogies: Software engineer should have good understanding of software
technologies. Ability to move among several levels of abstractions at different stages of
the software project, from specific application procedures and requirements to the
Jetailed coding level is also required.

o Project management: Software engineer should know how to make a project work,
on time and on budget, in order to produce quality applications and systems.

¢ Model of the application: Software engineer should be able to create and use a
model of the application to guide choices of the many tradeoffs that will be faced
by him The model is used to find answers to questions about the behaviour of the
system.

In addition to the above-mentioned qualities, software engineer should have good
communication and interpersonal skills. Moreover knowledge of object-orientation, quality
concept, International Organization of Standardization (ISO standards), and Capability
Maturity Model (CMM) are also required. The tasks performed by software engineers have

Software engineers often work as part of a team that designs new hardware and software.

Scanned by CamScanne‘r

e
L
L4

res common inte

Scanned by CamScanner

4
b
% : Prellmlﬂaf}' investigation should be quick and cost effective. The output of preliminary T ﬁ

investigation decides whether the new system should be developed or not. There are three
constraints, which decides the go or no-go decision.

o Technical: This evaluation determines whether technology needed for proposed system
isavailable or notand ifit is available then how can it be integrated within the organization.
Technical evaluation also determines whether the existing system can be upgraded to
use new technology and whether the organization has the expertise to use it or not.

o Time: Th_is evaluation determines the time needed to complete a project. Time is an
important issue in software development as cost increases with an increase in the time

period of a project.

» Budgetary: This evaluation looks at the financial aspect of the project. Budgetary
evaluation determines whether the investment needed to implement the system will be

recovered at later stages or not.

(a) Sofiware Analysis: This phase studies the problem or requirements of software in
detail. These requirements define the processes to be managed during the software
deve}_opment After analysing the requirements of the user, a requirement statement known
as software requirement specification (SRS) is developed. After analyses, planning for
the project begins. It includes developing plans that describes the activities to be performed
during the project, such as software configuration management plans, project and scheduling,

Defining the problem | Specify the site for the bridge, its size, Software requirement
precisely. -|'and a general outline of the type of analysis and specifications.
' bridge to be built.
 Detailing the solution to the | Determine exact configuration, size of Software design.
problem. the cables and beams, and developing
- blueprints for the bridge.

implementing. Correspond to actual building of the Software coding.

{ bridge.

i
Checking, Specify load, pressure, endurance, and Software testing.

and the quality assurance plans. In addition, the resources required during the project are

also determined.

Table 1.2 Building Bridge and Corresponding SDLC Phase

Phase

Building Bridge

SDLC Phase

Formulate the problem by
understanding the nature and
general requirements of the
problem.

Understand the load of the bridge it
must carry, the approximate locations
where it can be built, the height
requirements, and so on.

Preliminary investigation.

robustness of the bridge.

necessary.

Specify repainting, repaving, and
making any other repairs, which are

Software maintenance.

SteiIns!ruczié

Scanned by Carhgé'énner

software in a planned and systematic manner, In addition, software testing is performed to

ensure that software produces the correct outputs. This implies that outputs produced
should be according to user requirements,

After the software is developed and delivered, it may require changes. Sometimes, changes
are made in software system when user requirements are not completely met. To make
changes in software system, software maintenance process evaluates, controls, and
implements changes. Note that changes can also be forced on the software system because
of changes in government regulations or changes in policies of the organization.

1.42 Case Study:

PN nt;
hase provides informatio at i
Cification of software, together with data, function
form to feed the design task to meet required funct

Bridge and Software Development

Scanned by CamScanner

completion of the Jb ot

ess includes guidelines, which explain the objectives of each actis
are vital because they impose uniformity on the setofactl

is regarded more than procedure, tools and techniques, which are
structured manner to produce a product.

a

are processes include various technical and management issues, which are required
evelop software.

characteristics of software processes are listed in Table 1.6. -

Table 1.3 Software Process Characteristics

q
{

,éha' racteristics

Description
 Understandability | The extent to which the process is explicitly defined and the ease with which the
process defmition is understood. ——
Vjsibil_ity Whether the process activities culminate in clear results or not so that the progress
' of the process is visible externally. o
Supportability The extent to which CASE tools can support the process activities.
 Acceptability

The extent to which defined process is acceptable and usable

by the engin'ee'rs.
responsible for producing the software product. ¥
Reliability The manner in which the process is designed so Mrs_iﬂ\gpmm
E avoided or trapped before they result in errors in the product.
~ Robustness ~ Whether the process can continue inspite of unexpected problems or not.
| Maintainability Whether the process can evolve to reflect the changing organizational requirements
or identify process improvements.
Rapidity The speed with which the complete software can be delivered with. gi
Nk £ specifications: : 3 : i
. - ! _ ‘ Che
A project is defined as a specification essential for developing or maintaining a specific

product. A software project is developed when software processes or activities are executed
for certain specific requirements of the user. Thus, using software process, software
Project can be easily developed. The activities in a software project comprises of various |
s for managing resources and developing product. Figure 1.6 shows that a software
nvolves people (developers, project manager, end users, and so on) also referred to

s who use software processes to produce a product accordi; r

1

Scanned by CamScanner

re1.6 Software Project

, u"v\/ ’O!'\L&L_,D:@mﬂ]C:@q\()ﬁi._ﬁ(:ﬁw
ucts. %wﬁiﬁmﬁb e entities (
own in Figure 1.7. A software |

zw‘m@:zn nt of requi

VaIe processes requires compomnis
ents of software process include pro
ing rocess. The process manage

Scanned by CamScanner

o
JocCel

: f@onﬁgU_l'ation control process: Manages changes that occur as a result of modifyi

~ the requirements. In addition, it mﬁm‘mﬁ&?&
requirements. The activities in configuration control process are performed by a group
called configuration control board (CCB).

Project Configuration

t W'{’Q Process Product M Q,Q-l’fp f /h)dud’_
ieffCaaiie| Mamammen T | AR e

: Development ‘
8 A op Management Control Process |~ '%P”""w?’ g (‘V"

Process * Process

OY4an)Y (ot f
Figure 1.8 Software é‘?ocesses +ve M2 cc,l-tf’bé
: » ’)/_o/d/(,&-—’ Ce
Note that project management process and configuration control process depend on the
development process. The management process aims to control the development process,

depending on the activities in the development process.

1.5.2 Process Framework

Process framework determines the processes, which are essential for completing a complex .
software project. This framework identifies certain activities, which are applicable to all
software projects, regardless of their type and complexity. The activities used for these
purposes are commonly referred to as framework activities, as shown in Figure 1.9.
Some of the framework activities are listed below:

* Communication: Involves communication with the user so that the requirements
are easy to understand.

* Planning: Establishes a project plan for the project. Inaddition, it describes the schedule
for the project, technical tasks involved, expected risks and the required resources.

* Modelling: Encompasses creation of models, which allows the developer and the user
to understand software requirements. In addition, it determines the designs to achieve

those requirements.
* Construction: Combines generation of code with testing to uncover errors in the code.

* Deployment: Implies that the final product (that is, the software) is delivered to the
user, The user evaluates the delivered product and provides a feedback based on the

evaluation.

Sel

Scanned by CarﬁS

canner

i Figure 1.9 Process F@mework . : it
Pk phatic L ; rk also comprises of a set of acti
R0 ittEsgectivires, pmus:bﬁr:lf ::;ivities are used throughout the sof

8

o |

s and are listed below: o
Software project tracking and control:Momtors. the actual;:rocesh la?d S0 e ng‘::ox;em
can take necessary steps if software project deviates from the e Pt s, a2 m
tracking procedures and reviews to check whether the ,_soﬂw‘are pro_lecl:(s a;:or ing to
user requirements or not. A documented plan is used as a basis for tracking the software
activities and rg//is_igg_the plans. The management monitors these activifies.

]
fE * Formal technical reviews: Assess the code, products.and documents of software 3

engineering practises to detect errors.

* Software quality assurance: Assures that software is according to tl}e rt?q.uiremen.ts, In
addition, it is designed to evaluate the processes of developing and maintaining quality of
the software. -5 :

* Reusability management: Determines the criteria for products’ reuse and establishes
mechanisms to achieve reusable components. :

o Software configuration management: Manages the changes made in the software
processes of the products throughout the software project life cycle. It controls changes
made to the configuration and maintains the integrity in the so ftware development process.

—

S Scanned b CamScanner

A "*“"—. Facilitates process reuse: Process development s a u

| and fourth generation techniques.

r advantages of the softw Pfocess
Enhances understanding and provides a specific

processes. Othe

, Enables effective communication:
~ basis for process execution.

me-consuming and ex;_;ensivg ;
team utilise the existing processes for different

activity, thus, software development

jects. ; :

; lE):rf(::lective: Since process models can be used againand again; rzusa;:f ;:::ﬁ?ses provide
- an effective means for implementing processes for software develop : :

s models provide a framework for deﬁn}ng

software development. Thus, effective

description of the plans for the software

o Facilitates process management: Proces
process status criteria and measures for
~ management is essential to provide a clear
project. :
Every software development process model takes requirfzmcnts as mpus and l:l;}:\ltﬁyp?cdclﬁ
* as output. However, a process should detect defects in the phases in vt\: o
This requires verification and validation (V&V) of the products after each an ry
of software development lifecycle.

\
s
Verification Output . ﬁ)’& L)y
Requirementsﬂ} P';ohgzses and —» Products

L Validation

' : P e cu
|

Figure 1.10 Phases in Development Process \fC,QJ‘O(

" Verification is the process of evaluating a system or its component for determining the AT«(|
product developed at;each phase of software development. IEEE defines verification as “a)

process for determining whether the software products of an activity fulfil the requirements J-udr‘h
or conditions imposed on them in the previous activities.” Thus, it confirms that the product

is transformed from one forin to another as intended and with sufficient accuracy.

Validation is the process of evaluating the product at the end of each phase to ensure
compliance with the requirements. In addition, it is the process of establishing a procedure
and a method, which performs according to the intended outputs. IEEE defines validation
as “a process for determining whether the requirements and the final, as-built system or

software product fulfils its specific intended use.” Thus, validation substantiates the software

functions with sufficient accuracy with respect to its requirement specifications.

Various kinds of process models used are waterfall model, prototyping model, spiral model,

1.6.1 Waterfall Model

In waterfall model (also known as classical life ¢

yclé model) the development of software

i “:zgslels “s,ir?eple to understand, and represents processes, which are easy to manage |
, gur i 1a.1 rili:ll model comprises of different phases and each phase has its distinet |
e 0 0s that once a phase is completed, the development of software i

Scanned bj;/::é'afﬁ(‘Scaner

Figure 1.11 Waterfall Model

Table 1.4 Processes and Products of Waterfall Model

Input to the Phase Process/Phase Output of the Phase
Requirements defined through Requirements analysis ~ Software requirements specification
communication o document
Software requirements specification Desigz; Design specification document
document
Design specification document Coding Executable software modules
Executable software modules Testing Integrated product
Integrated product Implementation Delivered software

 Delivered software Maintenance Changed requirements

' As stated earlier, waterfall model comprises of several phases. These phases are listed

below:

o System/information engineering modelling: Establishes the requirements for the
system known as computer based system. Hence, it is essential to establish the
requirement of that system. A subset of requirements is allocated to the software. The

~system view is essential when the software interacts with the hardware, System
?ngineering includes collecting requirements atthesystemlevel. The information gathering
is necessary when the requirements.are collected ata level where all decisions regarding

business strategies are taken.

* Requirement analysis: Focuses on the requirements ofthe software which is to be

developed. It determines the processes that are incorporated during the development of

software. To specify the requirements’ users specification should be clearly understood

and the requirements should be analysed. This phase involves interaction between user

and software engineer, and produces a document known as softwarg requirement

 specification (SRS).

!

ScanArlrmed by CamSanner

> s AT 8 O3 Err A Mo s i

. - . .\' x ". ‘ 4 _?‘ p
into a software representation. In this phase, the emphas;;e is on ﬁndxzﬁg z!;nsee ! :
the problems defined in the requirement analysis phase.) so'fcwared‘ s S
phase is mainly concerned with the data structure, algorithmic detat rface

representations. . ; S o
' C:ding° Emphasises 0n translation of design into a programming language using e

rstand.
; coding style and guidelines. The programs created §hould be easy tg ﬁreatc: :nnd unde
: All the programs written are documented according to the specifica

i i f the

« Testing: Ensures that the product is developed according to the ;e‘qu;ré_lr;;r:‘t; ; i d

user. Testing is performed to verify that the product is functioning L

minimum errors. It focuses on the internal logics and external functions (t)‘a bwivis
and ensures that all the statements have been e)fercised (tes:ted?. No;e lt1 g
multi-stage activity, which emphasises verification and validation of the p ;

» Implementation and maintenance: Delivers fully functioning OPCfa}‘O“ﬁL,S("::‘_:::
to the user. Once the software is accepted and deployed at the user’s € i
changes occur due to changes in external environment (these include Uplffa:cc i =2
operating system or addition of a new peripheral device). The changes a 31 : f;eld =
to changing requirements of the user fmd the changes occurring mnd 5 o
technology. This phase focuses on modifying software, correcting errors, and 1mproving
the performance of the software.

The various advantages and disadvantages associated with waterfall model are listed in
Table 1.5.

Table 1.5 Advantages and Disadvantages of Waterfall Model

Advantages Disadvantages

= Relatively simple to understand. * Requirements need to be specified before the
development proceeds.

= The changes of requirements in later phases of
« Allows managerial control where a schedule with the waterfall model cannot be done. This
deadlines is set for each stage of development. implies that once an application is in the testing

= Helps in controlling schedules, budgets, and ‘::;Sf; Il:n: d}llfaﬁs:un to incorporate changes at
documentation. P 3

s Each phase of development proceeds sequentially.

= No user involvement and working version of
the software is available when the software is
developed.

= Does not involve risk management.

* Assumes that requirements are stable and are
frozen across the project span.

7

1.6.2 Prototyping Model

The prototyping model is applied when there is an absence of detailed information regarding
input and output requirements in the software. Prototyping model is developed on the
assumption that it is often difficult to know all the requirements at the beginning of a
project. It is usually used when there does not exist a system or in case of large and
complex system where there is no manual process to determine the requirements.

Prototyping model increases flexibility of the development process by allowing the user to
interact and experiment with a working representation of the product known as prototype.
A prototype gives the user an actual feel of the system.

Atany stage, if the user is not satisfied with the prototype, it can be thrown away and an

Sitirely new system is developed. Generally, prototyping can be prepared by following the
@PProaches listed below:

Scanned by CamScanner

, &

1E
D

COmpo

n
ot

Figure .1 -12 Prototyping Model]‘
1. Requirements gathering and analysis: Prototyping model begins with requiremeny,
analysis, and the requirements of the systemare defined in detail. The user js intervieweg
1o know the requirements of the system.
i 2. Quick design: When requirements are known, a preliminary design or a quick design
for the system is created. It is not a detailed design, however, it includes the Importapt
. o . aspects of the system, which gives an idea of the system to the user. Quick design
4 helps in developing the prototype. . :
- 3. Build Prototype: Information gathered from quick design is modified to form a
prototype. The first prototype of the required system is developed from quick design
It represents a ‘rough’ design of the required system,
4. Assessment or user evaluation: Next, the proposed system is

- £ J

the developer, .
S. Prototype refinement: Once the user evaluates the prototype, it is refined according

s g ST
2,

based on the fina] prototype, |
6. Engineer prgduqt: Oncg the requirements are completely known, user accepts the
final prototype. The final system i thoroughly evauateq apq tested followed by routine
maintenance op continuing bagis ¢o prevent large-scale failures and to minimise

Scanned by C&éthcanner

",.'r A A A ko
jence and insight by
; thereby resulting in better i sive.
U ;ootfyrg:’uimme“‘& * Developer boses focus of the real
ntation o olarify requirements, prototype and compromise with t
reducing ambiguityand | Of the product. For example, they
. between developer and of the meff'ment algorithms or inappro,
ication programming languages used in develop
prptotypc. i

Prototyping can lkad to false expectations-.' It

| uwser in software
, : ¢ involvement of users In SOTA¥

17 ::;elolf;egnr:aHencc, the reql-"":me"ts ofithe often creates a situation where user believes

| are met to the greatest exten . .| that the development of the system is finished
Lo 1< associated with the project when it is not.

= Helps in reducing risks as >

The primary goal of prototyping is rapid

development, thus, the design of system can

suffer as it is built in a series of layers without

considering integration of all the other

components.

e 00

1.6.3 Spiral Model

> introduced a process model lfnown as spiral model."rhe spiral mgdel
c{:)]rrls:soe: ?f?ae;?:lities organised ina spiral, which has many cycles. Tlusfmlglrel combines
the features of prototyping model and waterfall mt?el and is ?dvantageolésl or la gg, co;np!ex
and expensive projects. The spiral model determines requirement pro (;:ms in developing
the prototypes. In addition, spiral model guides and. measures thq‘?eed 0 n;k management
in each cycle of the spiral model. IEEE defines spiral model as “a modfel of the .software
development process in which the constituent activities, typically requtrements. analysis,
preliminary and detailed design, coding, integration, and testing, are performed iteratively
until the software is complete.”

The objective of spiral model is to emphasise management to evaluate and resolve risks in
the software project. Different areas of risks in the software project are project overruns,
changed requirements, loss of key project personnel, delay of necessary hardware,
competition from other software developers, and technological breakthroughs, which
obsolete the project. Figure 1.13 shows the spiral model and the steps involved in the model
are listed below: ;

1. Each cycle of the first quadrant commences with identifying the goals for that cycle.
In addition, it determines other alternatives, which are possible in accomplishing those
goals. :

2. The next step in the cycle evaluates alternatives based on objectives and constraints.

This process identifies the areas of uncertainty and focuses on significant sources of
the project risks. Risk signifies that there is a possibility that the objectives of the
project cannot be accomplished. If so the formulation of a cost effective strategy for
resolving risks is followed. Figure 1.13 shows the strategy, which includes prototyping,

simulation, benchmarking administrating user questionnaires or risk resolution technique.
The development of the software depends on remaining risks. The third quadrant
develops the final software while considering the risks that can occur. Risk management
considers the time and effort to be devoted to each project activity, such as planning,

| configuration managément, quality assurance, verification, and testing,

Scanned by Carhéééhne

Evaluate dlem.:
identify, resolve r n*,

Requirements plan
Life-cydle plan

ngelopmem

Design validation
and verification

1Integration 1
\Acceptance! and test 1
o test !

Impleme 3
tation :

: Develop, verify
v . g nextdevel product

A

Figure 1.13 Spiral Model

Coding

Develop, Verify:
next-level Product

)
1
'
1
!
1
'
1
L
1
I
1
1

\Integration
v and Test
1

\

Acceptance
- Test

" Flgure 1.14 Spiral and Waterfall Moge| SR

".‘.l:

Scanned by CamScanner

ote that processes in the water
el as shown in Figure 1.14.

le‘l 4 vantages associated with spiral model are listed in

Spiral model is also simil ro il -
e . G R ar to proto ; f the key features of
| prototyping is to deve - prototyping process model. As one o ey

, elop a prototype until the user requirements are accomplished. The

mnr:t::;p ‘,’Kfithe spiral model functions similarly. The prototype is developed to clearly

new protot and achieve user requirements. If the user is not satisfied with the prototype, a
prototype known as operational prototype is developed.

Table 1.7 Advantages and Disadvantages of Spiral Model

Advantages

Disadvantages

R RS P

® Avoids the problems inolintes : oy . :
e e o al:t-sultmg in risk-driven | = Assessment of project risks and its resolution

is not an easy task.

* Specifies a mechanism for i
softwa * Di i '
, assurance activities. re quality Difficult to estimate budget and schedule

o iz the beginning, as some of the analysis is not
piral model is utilised by complex and dynamic copciunulitherdesigniofithelsoftnarcys
projects. developed.
* Re-evaluation afier each step allows changes in
user perspectives, technology advances or financial
perspectives.

- Bsti_rnatbn ofbudget and schedule gets realistic as
the work progresses.

1.6.4 Fourth Generation Techniques (4GT)

Fourth generation techniques enable software engineers to specify characteristics of software
at a high level and then automatically generate the source code. In addition to being a
process model, fourth generation techniques are a-collection of software tools used by
software engineers to solve a problem by using a specialised language or a graphic notation
so that users easily understand the problem. Hence, fourth generation techniques use
, instructions similar to spoken languages to allow the programmers to define what they
| want the computer to do rather than how to do it. For this, fourth generation techniques use

certain too‘ls, which are listed below:

» Non-procedural languages for database query.

Report generation.

Dadta manipulation.

‘Screen interaction and definition.

Code generation.

High-level graphics capability.

Spreadsheet capability.

Automated generation of hypertext markup language and similar languages used for
web-site creation using advanced software tools.. '

The various advantages and disadvantages associated with fourth generation techniques
are listed in Table 1.8.

‘e 8 ® © © e o

Scanned by CamScanner |

ed with CASE tools and code generators,
fourth generation techniques provide a solution to most
of the software engineering problems. ;

’/ﬁ’ ROLE OF SOFTWARE METRICS
AND MEASUREMENT |

To achieve accurate schedule and cost estimate, better quality products, and 3'%::(;
productivity an effective software management is required, which in-turn can be atta o
through use of software metrics. A metric is a derived unit of measurement that canno

directly observed, but is created by combining or relating two or more measures. g

1.7.1 Software Measurement ‘

To assess the quality of the engineered product or system and to better understand
the models that are created, some measures are used. These measures are collected
throughout the software development life cycle with an intention to improve the
software process on a continuous basis, Measurement helps in estimation, quality control,
productivity assessment, and project control throughout a software project. Also,
measurement is used by software engineers to gain insight into the design and development
of the work products. In addition, measurement assists in strategic decision-making as a
project proceeds.

Software measurements are of'two categories namely, direct measures and indirect measures.
Direct measures include software processes like cost and effort applied and product like
lines of code produced, execution speed, and other defects that have been reported. Indirect
measures include products like functionality, quality, complexity, reliability, maintainability,
and much more. '

Generally, software measurement is considered as a management tool, which if conducted
in an effective manner helps project manager and the entire software team to take decisions
that lead to successful completion of the project. Measurement procesé is characterised by
a set of five activities, which are listed below:

* Formulation: Performs measurement and develops appropriate metrics for software

ks under consideration, . q
* Collection: Collects data to derive the formulated metrics. ' oo
* Analysis: Calculates metrics and use mathematical tools. L5
* Interpretation: Analyses the metrics toattain insight into the quality of representation,
* Feedback: Communicates recommendation derived from product metrics to the
software team.
Note that collection and analysis activities drive the measurement brocess. Iﬁ order to
perform these activities effectivel , it is recommended to automate data collection and -
[| analysis, establish guidelines and recommendations for each metric, and use statistical
Bl "tee.hruql;es to interrelate external quality features and internal product attributes. g
£ |

Scanned by CamScanner

